ARTICLES:
Consistency and Some Other Requirements of a Formal Theory in the Context of Multiverse Models
Issue: 13:4 (The fifty-first issue)
The paper is devoted to the problem of describing reality in the language of mathematics and logic in connection with intellectual intuition. The question raised is how the basic requirements of mathematical theory and logic will change if some of the multiverse models of modern physics are taken as the basis. Mathematics is considered in the context of various historical approaches. It is shown that some of the well-known requirements of a formal theory (such as consistency) may begin to play a different role if the multiverse hypothesis is accepted. In the framework of theories based on the idea of multiple worlds, the logical consequence, the natural law of Duns Scotus, the law of excluded middle, and other well-known facts of classical logic which in some cases cause controversy due to their intuitive unacceptability are resolved. The paper discusses an approach based on paraconsistent logics: such logics can be considered the first to correspond to multiverse theories.