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Abstract: 
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1. The Distinction: Intended Model versus Standard Model 
 
Mathematical theories may concern either a specified structure or a class of structures. Examples of 
theories of the first kind include theories of fundamental number systems (natural numbers, 
integers, rational numbers, real numbers, complex numbers), certain systems of geometry (for 
instance Euclidean geometry), and possibly also set theory, at least at the early stage of its 
development. Theories of the second kind include theory of groups, fields, topological spaces, 
vector spaces, and so on. The distinction in question applies to modern mathematics, it does not 
make sense in the case of mathematics before the second half of the 19th century. 

The notions of intended, standard and non-standard models may be applied in the case of 
theories of the first kind, for obvious reasons. The terms ‘intended model’ and ‘standard model’ are 
used sometimes interchangeably in literature. I propose to distinguish them in the following 
manner. The intended model of a theory is a structure which motivated the development of the 
theory in question. As a rule, this structure has been investigated for a long time and its properties 
are based on well-established mathematical intuitions emerging from the research practice.             
A necessary condition for a structure to become an intended model is thus its domestication in the 
mathematical research. One could also say that intended models are cognitively accessible to a high 
degree. Then there emerges a theory of such a structure, ultimately an axiomatic theory. 

The above characterization of the concept ‘intended model’ is intuitive, which in turn 
implies that the concept itself is also intuitive. A prominent example of an intended model in this 
sense is the natural number series with arithmetical operations defined in the usual way. Rational, 
real and complex numbers (as understood before the construction of the corresponding axiomatic 
theories of such numbers) provide further examples. It seems that the universe of the naive set 
theory could also be considered an example in this respect. 
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The notion of a standard model, in turn, may be introduced only after the theory in question 
has become a fully formalized theory, with overtly specified primitive terms and axioms 
characterizing them. In this situation the class of all models of the theory in question can be 
established. This class may consist of only one model or of many models, which depends on the 
language of the theory and the underlying logic, among other aspects. In the first case we obtain the 
standard model at once. In the second case we may only choose one of the models and call it 
standard. I propose to call a model ‘standard’, if it is most closely related to the intended model. 
The similarity between intended and standard model should be based on a kind of isomorphism. 
Because the standard model of a theory is a specific element of the well-defined class of all models 
of the theory in question, it is a genuine mathematical object and as such it is well-defined, too. We 
should remember, however, that the name standard was given to it on the basis of our decision. The 
latter was supported by the observed resemblance of the standard model to the intended model 
given in advance. It may also happen that certain theorems concerning the standard model provide 
additional support for our decision. Still, the selection of the name standard is based primarily on 
pragmatic criteria. 

The standard model of arithmetic is determined uniquely (up to isomorphism) on the basis 
of second-order Peano axioms. In the case of first-order Peano arithmetic its standard model is only 
one of the continuum many countable models of this theory. According to Tennenbaum’s theorem, 
it is the only recursive model of this first-order theory. It is also its prime model, meaning that it can 
be elementarily embedded in any other model of the theory in question. Non-standard models of 
arithmetic contain infinitely large numbers. 

The completely ordered real field (satisfying thus the upper bound property) is determined 
uniquely (up to isomorphism). It is commonly accepted as the standard model of the arithmetical 
continuum. It is also a maximal Archimedean field but it is not algebraically closed. The complex 
field, in turn, is determined uniquely (up to isomorphism) as the only algebraically closed field of 
the characteristic zero whose transcendence degree over the field of rational numbers equals the 
continuum. No order compatible with the arithmetical operations is possible in the field of complex 
numbers. 

The (first-order) theory of real closed fields is semantically complete, meaning that all 
models of this theory are elementarily equivalent, i.e. have the same set of true sentences. The real 
numbers, which form a real closed field, are thus characterized uniquely with respect to elementary 
equivalence in the first-order language. 

The hyperreal field is also elementarily equivalent with the field of real numbers, but it is 
not an Archimedean field (it contains infinitesimals). The rather unfortunate name non-standard 
analysis given to the theory concerning the hyperreal field may suggest that hyperreal numbers are 
non-standard. However, it is mainly the matter of mathematical research practice to decide, on the 
basis of accumulated knowledge and fruitfulness of applications, which structure should be called 
standard. 

A paper by Solomon Feferman [8] discusses the question of which formal representations of 
the geometric continuum could be thought of as standard. Feferman lists a few candidates: Euclid's 
continuum; Cantor’s continuum; Dedekind's continuum; Hilbert's continuum; the continuum as the 
set of all branches in the full binary tree; and the continuum as the family P(N)  (the full powerset of 
the set of all natural numbers). Feferman summarizes his paper on conceptions of the continuum as 
follows: 
 

Of all the conceptions of the continuum considered here, only those of sec. 3 stand as 
structural ones, and of those only 2N and P(N) stand as basic structural conceptions. For, 
the continuum in Euclidean and Hilbertian geometry is not an isolated notion, while the 
continuum as given by Cantor’s and Dedekind's construction of the real numbers, are 
hybrid constructions. The set 2N of all sequences of 0s and 1s isolates the set-theoretical 
component of Cantor’s construction, while the set P(N) of all subsets of N isolates that 
of Dedekind’s construction, but both of these lose entirely the basic geometric intuition 
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of the continuum. On the other hand, it does not count against Cantor’s and Dedekind’s 
conceptions of the continuum in the form of the real number system R that they are 
hybrids of geometrical, arithmetical and set-theoretic notions. On the contrary, by a kind 
of miracle of synergy, R has proved to serve together with the natural numbers N as one 
of the two core structures of mathematics; together they are the sine qua non of our 
subject, both pure and applied. 
 

If first-order Zermelo-Fraenkel set theory is consistent (which cannot be proved in the theory itself), 
then it has a plentitude of models. It is commonly accepted in the mathematical community to call a 
model of this theory standard, if the interpretation of the membership predicate in it is the real 
membership relation. Models of set theory without the axiom of foundation are usually seen as non-
standard models. 

The distinction between genuine (normal, natural, etc.) mathematical objects and those 
called unintended (unwilling, imaginary, etc.) was noticed in the history of mathematics even before 
the second half of the 19th century. For example, negative or imaginary numbers were long rejected 
as legitimate mathematical objects before they finally became accepted by the mathematical 
community. It is important to make a distinction between a non-standard (object) and an 
innovation. Haim Gaifman discussed the following innovations in mathematics in his paper [11] 
devoted to the non-standard models: the discovery of irrationals; the incorporation of negative and 
complex numbers in the numeral system; the extension of the concept of function in the nineteenth 
century; and the discovery of non-Euclidean geometry. Gaifman gives arguments that such 
innovations should not be considered non-standard. He also discusses certain further candidates for 
being a standard mathematical object, including well-ordered and constructible sets. The full 
powerset operation, on the other hand, escapes from the list of standards. 

There are several ways of constructing non-standard models of mathematical theories. Let us 
consider Peano arithmetic (PA). If we expand its language by a new individual constant c and take 
into account an infinite set of sentences � = {¬�� = �: � ∈ 
} (where �� is the numeral denoting the 
natural number n), then each of its finite subsets has a model and it follows from the compactness 
theorem that � itself has a model. The denotation of c in this model is different from each standard 
natural number and hence the model in question is non-standard. Another possibility, already 
anticipated by Thoralf Skolem, is to build a suitable ultraproduct (actually, an ultrapower) starting 
with the standard model of PA. One can also consider a full binary tree of expansions of arithmetic 
and show that each branch of this tree corresponds to a model of PA; one of them is the standard 
model, while all others are non-standard models. We will come back to the latter possibility below, 
discussing Jan Woleński’s views on non-standard models. 

 
2. On the Origin of Metalogical Concepts 
 
Claims about uniqueness of models require precise tools of comparison of the models themselves. 
There are essentially two ways of characterizing the indistinguishability of models of a given 
theory. One of them is structural: we may ask whether the models are isomorphic (or partially 
isomorphic, or one of them being a homomorphic image of the other, and so on). The notion of 
isomorphism emerged in algebraic considerations in the early 19th century. Isomorphic structures 
are structurally indistinguishable. If all models of a theory T are isomorphic, then we say that T is a 
categorical theory. A theory T is categorical in power κ (where κ is an infinite cardinal number), if 
it has a model of power κ and all its models of power κ are isomorphic. It should be stressed that 
first-order theories cannot be categorical, with the exception of certain trivial cases. This is a 
consequence of Löwenheim-Skolem-Tarski theorem which says that if a theory (without finite 
models) has a model, then it has models of all infinite cardinalities. 

Another kind of indistinguishability of models is based on semantic criteria. We say that two 
models are elementarily equivalent, if the sets of sentences true in them coincide. A theory T is 
(semantically) complete, if all its models are elementarily equivalent. If two models are isomorphic, 
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then they are also elementarily equivalent, and hence categoricity implies semantic completeness, 
but the converse implication does not hold. 

The notion of categoricity originated in the papers of Edward Huntington and Oswald 
Veblen. Huntington used the term sufficiency in 1902 and Veblen replaced it by the term 
categoricity in 1904. In the nineteen-twenties Abraham Fraenkel and Rudolf Carnap used the term 
monomorphy  (Monomorphie in German) in the meaning in question. Fraenkel and Carnap 
considered also a kind of semantic completeness (called by Carnap non-forkability, in German: 
nicht-Gabelbarkeit). It should be stressed that before emergence of well-developed metalogic the 
notions of categoricity and semantic completeness were not sharply separated. In the absence of 
precise formal logical tools the claim that isomorphism implies semantic indistinguishability was 
understood evident by Huntington, Veblen and also earlier by Richard Dedekind. An important 
early contribution to the relationships between these notions is the paper [15] written by 
Lindenbaum and Tarski. Tarski’s paper [22] from 1940 (printed as appendix in [16]) elaborates 
further this issue. Tarski introduced the notion of elementary equivalence in the nineteen-fifties. 
Many important observations concerning the emergence and mutual relations between the notions 
in question are contained in [1], [6] and [7]. 

Categoricity, categoricity in power and semantic completeness were further characterized in 
full detail in classical and modern model theory. There is no need to report on these results here; an 
interested reader may consult for example [14] or [17]. Let us only add that the tools from model 
theory are sufficient for talking about several kinds of indistinguishability of models and the 
uniqueness of these models. 
 
3. Extremal Axioms 
 
The term ‘extremal axiom’ was introduced in the paper [4] written by Carnap and Bachmann. The 
authors tried to present a general form of these axioms using the logical framework of the theory of 
types. At the beginning of the paper they write (citing [5] which is the English translation of [4]): 
 

Some important axiom systems are so constructed that first a series of axioms is given, 
making certain statements about the basic concepts of the axiomatic theory, and then at 
the end an axiom of a special sort appears which apparently speaks about the foregoing 
axioms and not about the special concepts of the theory. The most famous axiom system 
of this sort is Hilbert's axiom system of Euclidean Geometry. It ends with the famous 
‘completeness axiom’ which runs as follows [The footnote given here by the authors 
reads: D. Hilbert, Grundlagen der Geometrie (Leipzig and Berlin). We take the Hilbert 
completeness axiom in the form it has in editions 2–6, not the ‘linear formulation’ of the 
7th edition of 1930. – J.P.]: 

 
‘The elements (points, lines, planes) of geometry constitute a system of things which 
cannot be extended while maintaining simultaneously the cited axioms, i.e., it is not 
possible to add to this system of points, lines, and planes another system of things such 
that the system arising from this addition satisfies axioms AI-V1.’ 
 
Axioms of this sort, which ascribe to the objects of an axiomatic theory a maximal 
property – in that they assert that there is no more comprehensive system of things that 
satisfies a given series of axioms – we call a maximal axiom. The same axiomatic role 
as that of maximal axiom is played in other axiom systems by minimal axioms which 
ascribe a minimality property to the objects of the discipline. Maximal and minimal 
axioms we call collectively extremal axioms [5, pp. 68-69]. 
 

Besides Hilbert’s axiom of completeness in geometry (which was an axiom of maximality) Carnap 
and Bachmann considered two axioms of minimality: the induction axiom in arithmetic and 
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Fraenkel’s axiom of restriction in set theory. The latter says, roughly speaking, that only these sets 
exist whose existence can be proved in set theory (and hence the universe of all sets should be as 
narrow as possible). Extremal axioms were considered by Carnap and Bachmann as expressing a 
kind of completeness of models and hence as candidates for conditions characterizing models in a 
unique way. The famous limitative theorems proved later in the 20th century showed the 
possibilities and restrictions in this respect. 

Early Carnap’s views on extremal axioms and metalogic are best described in several papers 
written by Georg Schiemer (see for instance [21]). My book [19] presents logical, mathematical and 
cognitive aspects of extremal axioms. In particular, I propose to extend the inventory of extremal 
axioms by taking into account Kurt Gödel’s axiom of contructibility, John von Neumann’s axiom of 
the limitation of size and Roman Suszko’s axiom of canonicity (these are examples of restriction 
axioms in set theory, hence axioms of minimality) as well as axioms of the existence of large 
cardinals in set theory (which are axioms of maximality). I also mention an interesting example of a 
maximality axiom in algebra, namely a generalization of Dedekind’s axiom of continuity proposed 
by Philip Ehrlich and used by him to prove categoricity results concerning certain non-
Archimedean structures. 

Hilbert’s axiom of completeness in geometry presented in [13] was later replaced by the 
axiom of continuity for real numbers which resulted, among others, in the proof of categoricity of 
the system of Euclidean geometry (see for example [3]). Second-order axiom of induction in 
arithmetic is used in the proof that there exists exactly one (up to isomorphism) Peano algebra. On 
the other hand, first-order Peano arithmetic is far from being semantically complete (and hence also 
categorical). 

It is interesting that mathematicians have changed their views on extremal axioms in set 
theory. The axioms of restriction were abandoned, which was most explicitly shown in [10]. Set 
theoreticians are recently eager to investigate several axioms of the existence of large cardinals 
which presuppose that the universe of all sets should be as large as possible. Kurt Gödel himself 
opted for this trend and Ernst Zermelo proposed to accept the existence of the whole transfinite 
hierarchy of strongly inaccessible numbers already in his second axiomatization of set theory 
presented in [26]. 

 
4. Jan Woleński on Intended and Standard Models 
 
Jan Woleński devoted several works to metatheoretical analysis of formalized theories. In my 
opinion, most interesting are his proposals involving applications of concepts elaborated in 
metalogic to the analysis in question. It is justified to claim that Jan Woleński achieved perfection 
in this work. He may doubtlessly be considered the leading continuator of the famous Warsaw-Lviv 
school. 

We shall analyze in brief Woleński’s views on intended and standard models. Our main 
source is his book on epistemology [25]. Many Polish philosophers wrote on intended models 
(notably Marian Przełęcki, Adam Nowaczyk, Ryszard Wójcicki, and Adam Grobler) but their 
analysis was focused mainly on intended models of empirical theories. Jan Woleński’s reflections, 
in turn, are devoted mainly to intended and standard models of mathematical theories which is also 
the main issue discussed in this note. 

Jan Woleński influenced my own views on intended and standard models mainly with 
respect to the opinion that these models are distinguished not on purely syntactic or semantic 
criteria but rather by taking into account also certain pragmatic factors. There may be small 
differences between his understanding of the distinction between intended and standard models and 
the one presented at the beginning of this note, but they are negligible. 

Woleński recalls the construction of the tree of extensions of first-order Peano arithmetic PA 
([25], 256; [18], 161). Let T0=PA and let ψ0 be any undecidable statement in T0. We put: T00 = PA 
+ ψ0  and T01 = PA + ¬ψ0. For any finite 0–1 sequence σ let: Tσ0  = Tσ + ψσ and Tσ1 = Tσ + ¬ψσ, 
where ψσ is any undecidable sentence of  Tσ (for any Tσ  there exists such an undecidable sentence). 



136 
 

We obtain in this way the full binary tree of extensions of  PA. This tree has continuum many 
branches. It follows from the compactness theorem that the union of theories from each branch is 
consistent (under the assumption of consistency of  PA) and hence each such union has a model. 
Further, due to the downward Löwenheim-Skolem theorem each such union has a countable model. 
No two such models are elementarily equivalent which follows from the construction of the above 
tree. Consequently, no two such models are isomorphic. 

Let ψ0 be identical with Con(PA) (that is, the sentence expressing the fact that PA is 
consistent) and let ψα express the consistency of Tα. Then the model of the leftmost branch of the 
above tree is isomorphic to the standard model of PA. All other branches have countable non-
standard models. Each sentence of the form ¬Con(Tα) has the Gödel number which is a non-
standard natural number in the respective model. Let us note on the margins that PA is a wild 
theory: it has, in each infinite power κ, the maximum possible number of models, that is 2κ 
(provided the consistency of PA, of course). 

The standard countable model of PA can be distinguished out of the totality of countable 
models of this theory only using some metatheoretical results, as already mentioned above. 
However, Jan Woleński proposes a more deep and subtle analysis of this issue. We need some 
auxiliary tools to present his views here: 

A theory T is descriptively complete (in short: o-complete) with respect to a sequence 
(�)�∈� of individual constants (where S is any index set), if for any formula φ(x) of the language of 
T with one free variable x the following implication holds:  if φ(x/as) is a theorem of T for all � ∈ �, 
then also ∀��(�) is a theorem of T. If the sequence of individual constants in question is countable, 
then we say that T is ω-complete. 

A theory T is constructive with respect to a sequence of terms (��)�∈�, if for any formula 
φ(x) of the language of T with one free variable x the following implication holds: if  ∃��(�) is a 
theorem of T, then φ(x/ts) is a theorem of T for some � ∈ �. 

A theory T is o-consistent with respect to a sequence of terms (��)�∈�, if for any formula 
φ(x) of the language of T with one free variable x the following implication holds: if φ(x/ts) is a 
theorem of T for all � ∈ �, then ∃�¬�(�) is not a theorem of T. If the sequence of terms in question 
is countable, then we say that T is ω-consistent. If a theory T is not ω-consistent, then we say that T 
is ω-inconsistent. 

By the ω-rule we understand a rule of inference with an infinite set of premisses 
�(0), �(1�), �(2�),… and the conclusion ∀��(�).  

These notions are related to the possibility of associating names with the elements of the 
domain of a model. ω-consistency was used already by Kurt Gödel in the formulation of his first 
incompleteness theorem. Descriptive completeness and constructivity were used by Andrzej 
Grzegorczyk in his famous paper on categoricity [12]. If the language of our theory contains 
numerals, then we can talk in this language about specific natural numbers. There arises a question 
of how these properties can be used in the characterization of models of a theory. 

For any model M let Th(M) denote the theory of M, that is the set of all sentences true in M. 
Let N0 denote the standard model of PA, Nc the non-standard model obtained by using the 
compactness argument in the way described above and Nin the non-standard model of the theory 
PA+ ¬Con(PA) obtained from the tree of expansions of PA presented earlier. The set Th(N0) is thus 
the set of all arithmetical truths, that is true sentences about standard natural numbers. We recall 
that PA is incomplete and essentially undecidable. It is not finitely axiomatizable. If we add the 
infinitary ω-rule to PA, then the enriched theory becomes complete, but the price for that is very 
high, because we admit infinitary proofs, which is of course a debatable decision. 

Jan Woleński uses an original generalization of the traditional square of oppositions for a 
formal representation of the logical dependencies between the notions of consistency, 
inconsistency, ω-consistency, and ω-inconsistency. It should be noted that these generalizations (see 
[24]) appeared to be a very productive and effective tool of logical analysis as shown by Woleński 
in his numerous articles on analytical philosophy. We are interested here mainly in possibilities of 
applying the notions in question to the characterization of intended and standard models. 
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All axioms and theorems of PA are true in the model Nin. However, the sentence ¬Con(PA)  
is also true in Nin. The Gödel number of this sentence cannot be a standard natural number because 
otherwise PA would prove its own inconsistency, contrary to what was assumed. The sentence 
¬Con(PA) is obviously false in the standard model N0 and Woleński writes that it is difficult to 
express its sense in the language appropriate for talking about N0. If we are looking for formal 
criteria of being the standard model of arithmetic, then a good candidate could be the well-ordering 
property of the set of natural numbers. Woleński shares this opinion with Haim Gaifman (see [11]). 

The set Th(N0) of all standard arithmetical truths is ω-consistent, ω-complete and 
constructive with respect to the sequence of all numerals. Woleński argues that o-consistency and 
constructivity are too strong conditions for the characterization of an arbitrary set of true sentences. 
For example, the set Th(Nin) is consistent but ω-inconsistent. It cannot be constructive, because 
consistency and constructivity imply ω-consistency. Further, Woleński adds that it is possible to 
consider the set Th(Nc) as o-consistent and constructive with respect to a suitably chosen sequence 
of constants. Then Th(Nc) is also o-complete. Woleński concludes from this that consistency (even 
maximal consistency) and o-completeness are minimal syntactic conditions characterizing the set of 
sentences true in any model and that the existence of theories which are consistent but at the same 
time ω-inconsistent clearly shows that truth differs essentially from provability. The semantic 
theory of truth alone is unable to distinguish the standard model in the class of all models.  

Woleński says a few words explicating the commonly accepted assumption that PA is (a 
formal representation) of the True Arithmetic. From the point of view of a mathematician this could 
mean that the True Arithmetic is simply the totality of all logical consequences of the axioms of PA, 
even if not all of them have real applications. Another position (taken by a logician, according to 
Woleński) could accept the set Th(N0) as the True Arithmetic, thus identifying it with all 
arithmetical truths. Non-standard models of arithmetic can nevertheless be fundamental in certain 
mathematical disciplines – a notable example is the hyperreal field which has become recently more 
and more important in mathematical analysis. 

Woleński expresses a few interesting remarks concerning the ways of formalization of 
arithmetic. The class of models isomorphic to N0 can be characterized in second-order logic and this 
fact is considered a virtue of such formalization, first of all by the professional mathematicians. 
However, second-order arithmetic is undecidable and incomplete. The great expressive power of 
second-order logic is related to the acceptance of the absolute notion of a set. The expressive power 
of a logic is inversely proportional to its deductive power. Jan Woleński explicitly opts for first-
order formalization, which possesses a lot of ‘good’ deductive properties and adds that this choice 
does not have any influence on the criteria of standardness of models. 

The monograph [25] contains a very detailed analysis of the notion of an analytic sentence. 
One type of such sentences is relevant to standard models. Woleński proposes to call a sentence ψ 
analytical in the pragmatic sense, if there exists a theory T such that ψ is a theorem of T and ψ is 
true in the intended model of T. From the formal (logical) point of view standard models are as 
good as non-standard ones. It is our epistemic decision to call a model standard. We have argued in 
the first part of this note that this decision is determined by reflecting on the properties of the 
intended model, a structure investigated prior to the emergence of the formal (axiomatic) theory. 

The monograph in question contains also a critique of Putnam’s arguments expressed in 
[20]. Jan Woleński shows that Putnam is wrong claiming that models are nothing else but 
constructions inside theories. Putnam assumes that we refer to models (in particular to the intended 
model) always using the tools of the corresponding theory. This is clearly false, writes Woleński, 
because we must refer to metatheory when distinguishing between models. This is obvious for 
instance in the explication of Skolem's paradox in the context of models of the theory of real 
numbers. We switch to metatheory asserting that the proper (adequate) model of this theory has a 
power of continuum. The impossibility of definition of models in the object language, which 
follows from metalogical results, is discussed in more detail in [23]. 
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5. Concluding Remarks 
 
The main goal of this note was to present Jan Woleński’s views on intended and standard models of 
mathematical theories. His contribution to this issue is based on an original application of 
metalogical results to philosophical problems. One can hardly find in philosophical literature 
examples of formal analysis comparable in depth and subtlety to those provided by Jan Woleński.  
My own distinction between intended and standard models was influenced by his proposals. In a 
sense, the distinction in question slightly resembles the distinction between the intuitive notion of a 
computable function and any precise mathematical representation of computability (for instance 
recursive functions or Turing machines). 

Woleński’s remarks are related first of all to models of arithmetic and to a lesser extent to 
geometric continuum and set theory. Taking into account the history of mathematics on a large 
timeline it seems legitimate to say that the intended model of arithmetic is much better understood 
than the continuum. The long philosophical debate about the structure of a continuum is still vivid 
and far from ultimate conclusions. The most commonly accepted representation of the geometric 
continuum by the arithmetical continuum of real numbers competes with the quite new 
representation based on hyperreal numbers. One can also find the opinion that the continuum should 
not be considered as a set of points, though no well-developed mathematically correct alternative is 
in sight at the present moment. This situation may prompt us to the conclusion that mathematicians 
have described several aspects of the continuum but have not captured the intended model of the 
continuum yet. A very interesting recent review of opinions on the structure of the continuum can 
be found in [2]. The discussion concerning models of set theory is also far from being closed as is 
clearly visible from the research directed towards new axioms which could characterize the set-
theoretical universe in a more unique way.  
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