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Abstract: 

The purpose of this paper is to contribute to the natural logic program which 

invents logics in natural language. This study presents two logics: a logical 

system called ),( R  containing transitive verbs and a more expressive logical 

system ),,( IAR  containing both transitive verbs and intersective adjectives. 

The paper offers three different set-theoretic semantics which are equivalent for 

the logics.   
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1. Introduction 
 

Relational syllogistic theories have been taking place in wide applications of different areas such as in 

natural language theory and generalized quantifiers [5], [1], [7], [9], [8], [22], in algebraic structures [2], 

[3], [16], [20], in formal logic [4], [11], [12], [15], [14], [17]. The Aristotelian syllogistic did not touch on 

the validity of sentences containing transitive verbs. De Morgan presented traditional syllogism within 

relational facts [6]. De Morgan did not mention syllogisms with binary relations with the intention of 

transitive verbs. Hartmann and Moss extended syllogism with binary relations with the aim of using 

transitive verbs [17]. Moss presented a logical study using of intersective adjectives in basic syllogistic 

[12]. Nikolay and Dimiter presented a system of relational syllogistic, based on classical propositional 

logic and Stone theory [10]. 

This paper considers the so-called informative verbs. In its atomic propositions ―QS  + verb  + 

QS ‖ and ― QS  + verb  + 1QP  + to + 2QP ‖ where },{ allsomeQ . These verbs designate actions 

which can be observed and are not depended on their utterances (‗to run‘, ‗to take‘, etc.). However, there 

are also the so-called performative verbs. They are carried out only by means of uttering them aloud (‗to 

love‘, ‗to hate‘, etc.). The syllogistic for performative propositions is first introduced in [18]. In this 

system, there are examined concepts which have no denotations at all verbs such ‗love‘, ‗hate‘, etc. For 

these concepts, therefore, we can not define an inclusion relation and we need a novel formal system. 

Some applications of that new syllogistic are proposed in [18], [19]. 

The current author of this paper presented algebraic semantics (bounded meet semi-lattice) of 
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binary and ternary relational logics by using congruence theory [21]. This paper offers some different 

semantics for ),( R  and ),,( IAR . 

 

1.1.Some Explanations on Inference Patterns and Languages of the Logics  
 

In this paper, we study three different equivalent set-theoretic models for inference patterns of sentences 

in natural language related to intersective adjective phrases in binary relational (transitive verbs) 

syllogistics. In this sense, there are two logics ),( R  and ),,( IAR  which is a follow-up the work of 

Moss [20]. Sentences of the language of ),( R  consist of two quantifiers ―for all‖ ( ) and ―exists‖   

( ), and plural nouns and also transitive verbs, but ),,( IAR ‘s also include intersective adjectives. 

Our approach to sentences with or without intersective adjectives falls in model-theoretic semantics. The 

interpretation of a phrase such as red cars would be the intersection of the interpretation of ―red things‖ 

and a set of ―car individuals‖. 

English sentences such as ―all students love some cleaver teachers‖ are ambiguous. We use these 

kinds of sentences in meaning of ―there is at least one cleaver teacher who all students love‖. In this 

regard, the sentences reflect binary relational perspective directly in our logics. On the other hand, we are 

not interested in sentence forms of Aristotle‘s syllogistic which consists of Det  + A  are (are not) + B  

where Det  is All  or Some  or No , and also A  and B are plural nouns but Det  + A  + transitive 

verb + Det  + B . 

Universal quantifiers entail existential quantifiers in our logics because the interpretation of 

nouns does not allow to be empty set as is in Corcoran‘s syllogistic system [5]. Some examples of the 

inference patterns in our languages as follows: 

 

 (i) Some students love all teachers 

------------------------------------------------ (I1) 

Therefore, some students love some teachers   

 

 (i) Some cleaver students see all teachers 

(ii) Some instructive teachers see some janitors 

--------------------------------------------------------------- (I2) 

Therefore, some students see some instructive teachers 

 

Inferences in Aristotle‘s syllogistic let sentences to obtain nouns in their conclusions from different the 

ones in their premises. Although the plural noun educators is not be contained by the premise (i), it does 

by the conclusion as can be seen in (I3). 

 

(i) Some students see all teachers 

(ii) All teachers are educators 

--------------------------------------------------------------- (I3) 

Therefore, some students see some educators 

 

Turning to binary syllogistic ),R(   without Aristotle's, one must make inferences with sentences 

having the same relations, the same nouns and the same orders both in premises and in conclusions as in 

example (I1). Under the circumstances, the changes must be situated in quantifiers in derivations of the 

syllogistics but no changes for nouns and relations. On the one hand, the unchangeability of nouns and 

relations force the structure ),R(   to have equivalence classes (see remarks 2.11 and 3.10). 

Concerning with binary syllogistic ,IA),R(   without Aristotle‘s, the plural adjectival noun instructive 
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teachers is not be contained by the premise (i) but it is contained by the conclusion as can be seen in (I2). 

This indicates that if there is an intersective adjectival noun in premises, we may have it in conclusion to 

restrict inferences by intersective adjectival nouns. This situation induces to force using of equivalence 

classes within the structure ,IA),R(  . In other words, if there is no intersective adjectival noun in 

premises, we can not make an inference containing intersective adjectival nouns. 

Finally, notice that the set of nouns and relations have countable sizes and all models are finite 

throughout the paper. Languages of the logics in this paper are not closed under boolean operations and 

do not have recursion. 

 

2. The Logic of ),R(   

 

Our syntax starts with a collection P  of unary atoms (for nouns) and another collection, R  of binary 

atoms (for transitive verbs). A transitive verb takes a subject and a direct object - shall be interpreted as a 

binary relation on the universe M .  

 

 
Fig. 1.Rules for ),R(   

 

Observation 2.1. An unsound inference:  

 

 
( , ( , )   ( , ( , ))

( , ( , )

p r q p r q

p r q

   

 
 

 

To see the rule is not sound, we construct a counter-model. Suppose that },{=]][[ 21 ppp  and 

},,{=]][[ 321 qqqq  and also )},(),,(),,(),,(),,{(=]][[ 2212312111 qpqpqpqpqpr . Whereas the premises are 

true in the model, the conclusion )),(,( qrp   is false.   

 

 
 

Table 1.Syntax, their natural readings, natural examples   

 

Lemma 2.2. Let   be a set of sentences in ),R(  . The followings hold:   

1. )),(,(| qrp   if and only if (iff)  )),(,( qrp .  

2. If )),(,( qrp   and )),(,(| qrp  , then  )),(,( qrp .  



34 

 

3. If )),(,( qrp   and )),(,(| qrp  , then  )),(,( qrp .  

4. If )),(,( qrp   and )),(,( qrp   and )),(,( qrp   and )),(,(| qrp  , then 

 )),(,( qrp .  

 

2.1.Model Construction 
 

Here, we give some definitions and examples to clarify the paper. 

 

Definition 2.3. P  is a set of noun variables,   and   are quantifiers in language of the logic. 


P  is 

a set which consists of elements which accepted quantifiers in the language as subscript of nouns.  

Example 2.4.  If },{= yxP , then },,,{= 



yxyxP .  

 

Definition 2.5. Let   be a set of sentences. P  is the set of nouns occurring in  . R  is the set of 

binary terms in  . 


P  is the set of elements of P  with their quantifiers.  

 

Example 2.6. ))},(,()),,(,()),,(,({= 110 hrzyrxyrx  . 

},{= 10 rrR , },,,{= hyzxP , },,,,{= 



 hyxzxP  

 

Definition 2.7. We define an translation from 


P  to )(


PP  as the following:  

)(:][


PP P  

},{  xxx   

}{  xx   

 

Definition 2.8. We define two sets [ ] = {[ ] :for i in }P i P
 

   and RPPM 


 .  

 

Definition 2.9. Let   be a set of sentences and 







  RPPVec ][][ . We define a translation from 

to Vec . 

VecV  :  

)],[],([)),(,( rqpqrp    

Please notice that the translation is an one to one correspondence.  

 

Remark 2.10. Note that 
 MVec .  

 

Definition 2.11. Two elements )],[],([ 0rlk   and )],[],([ 1rqp   of Vec  are in the same equivalence 

class, if axk =  or xk =  and axp =  or xp =  and byl =  or yl =  and czq =  or zq =  and 

10 = rr  where zyx ,,  are basic nouns.  

 

Remark 2.12. If two elements in 
M  are in the same equivalence class, we will denote two elements 
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that first two elements are represented by the same letters and last ones are the same. For instance, 

)],[],([ rqp   and )],[],([ rqp   are in the same equivalence class because first objects of two 

elements are denoted by p , second ones are q  and last ones are r .  

Definition 2.13. A down-set of element )],[],([ 0rlk   of M  is a set 

}=and][][and][][:)],[],{([=)]],[],[([ 1010 rrlmkprmprlkd R

 


. We also define 

}:][{=][ 






MiidMd RR

, shortly, 



M .  

 

Definition 2.14. 10 =and][][and][][ rrlmkp    iff )],[],([)],[],([ 01 rlkrmp   .  

 

Theorem 2.15. )),(,(| qrp   iff 



Mrqp )],[],([  , in other words,  

),(=:]])[[,(=  





MM RRR MM .   

 

Proof 2.15. We will prove the theorem on complexity of sentences of   and elements of 



M . 

:)(  

(i) Suppose that )),(,(| qrp  . It is clear by Lemma 2.2. 

(ii) Suppose that )),(,(| qrp   and )),(,( qrp  . )),(,( qrp   must be in   by 

Lemma 2.2. So, 



 Mrqqp )},,{},({ . 

(iii) Suppose that )),(,(| qrp   and )),(,( qrp  . )),(,( qrp   must be in   by 

Lemma 2.2. So, 



 Mrqpp )},{},,({ . 

(iv) Suppose that )),(,( qrp   and )),(,( qrp   and )),(,( qrp   and 

)),(,(| qrp  , then ( , ( , ))p r q    by Lemma 2.2. Therefore, 



 Mrqp )},{},({ . 

:)(  

(i1) Suppose that 



 Mrqqpp )},,{},,({ . It is clear by Lemma 2.2. 

(i2)Suppose that 



 Mrqqp )},,{},({  and Vecrqp  )],[],([ . Then, )],[],([ rqp   must 

be in Vec  so that 



 Mrqqp )},,{},({  by the model construction. )),(,(| qrp   by (i1). 

Finally, )),(,(|)),(,( qrpqrp   by rule (1) in Figure 1. 

Other proofs are routine. 

 

Theorem 2.16.  |  iff there exists at least one   such that ][][    in 



M .  

 

Proof 2.16. We saw that there is at least one upper set of   to derive it from   or a sentence   due to 

the definitions V  and down-sets in the sufficient condition of Theorem 2.15. 
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3. The Logic of ,IA),R(   

 

Syntax: Our syntax begins with basic nouns ...,, zyx  by adding intersective adjectives ...,, cba . We 

define the set of nouns, and denote nouns by letters like ,, pn  and q , by saying that the basic nouns are 

nouns, and if x  is a noun and a  is an intersective adjective, then xa  is a noun. We call these nouns of 

the form xa  complex nouns. We do not allow productive predictions which allow to be used more than 

one adjective in a complex noun such as xba :  where a  and b  are adjectives and x  is a basic noun. 

One collection P  of unary atoms (for nouns) and another collection, R  of binary atoms (for transitive 

verbs). As is in ),R(  , verbs will be interpreted as binary relations on the universe M . 

 

 
Table 2.Syntax, their natural readings, natural examples   

 

Semantics: A model M  is a set M , together with interpretation functions 

 

)(:]][[ MP P  

)(:]][[ MMR P  

 

For each unary atom Pp , Mp ]][[ , and for each binary atom r , RMMr ]][[ . We interpret set 

terms by subsets of M  in the following way: 

 

[[ ( , )]] ={ : for all [[ ]],( , ) [[ ]]}r q x M v q x v r     

}]][[),(]],[[some:{=)]],([[ rvxqvMxqr   

 

Here is how set terms are read: 

 

),( byr  : those who r all by 

),( yr  : those who r all y 

),( byr  : those who r some by 
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),( yr  : those who r some y  

 

Finally, we have the definition of truth in a model:  

| ( , ( , ))RM p r y    iff )]],([[]][[ yrp   

| ( , ( , ))RM p r y    iff )]],([[]][[ yrp   

| ( , ( , )RM p r y    iff  )]],([[]][[ yrp  

| ( , ( , ))RM p r y    iff  )]],([[]][[ yrp  

 

 
Fig. 2.Rules for ,IA),R(  : qhp ,,  nouns, zyx ,,  basic nouns, },{,   

 
Fig. 3.Derivation diagram for rules (1), (2), (3), (4), (5). p  and q  are basic nouns or complex 

nouns. 

 

Figure 2 indicates rule set of the logic. The rules (6) – (11) are abbreviated form of too many rules. For 

example, 
)),(,(

)),(,(

qrx

qrax




 and 

)),(,(

)),(,(

qrx

qrax




 are full form of 

)),(,(

)),(,(

qrx

qrax








. Figure 3 and Figure 4 

shows that derivations of sentences from a sentence or sentences in the language of the logic. ―If  , 

then  ‖ is indicated by the arrows. The arrows do not work reverse direction. 
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Fig. 4.Derivation diagrams for rules (6), (7), (8), (9), (10). 

 

One of the main problems in logic is an algorithm to tell if  |  or not. When one wants to check 

whether )),(,(| yrx   or not. All the arrows in Figure 3 and Figure 4 may be checked in the 

worst-case scenario for derivations in the logic. A model construction which tests being an element of a 

set and being a subset of a set is desired to not check the derivations in the scenario. 

 

3.1. Model Construction 
 

Definition 3.1. P  is a set of noun variables (complex or basic nouns),   and   arequantifiers in 

language of the logic. A set 


P  consists of elements which accepted quantifiers in the language as 

subscript of nouns.  

 

Example 3.2. If },,{= xayxP , then },,,,,{= 



xayxxayxP  

 

Definition 3.3. For a set of sentences  , P  is the set of nouns occurring in  , R  is the set of binary 

terms in  , and 


P  is the set of elements of P  with their quantifiers.  

 

Example 3.4. ))},(,()),,(,()),,(,({= 110 zrzcybrxayrx  . 

},{= 10 rrR , },,,,{= zybzcxxaP , },,,,{= 



 yxazzcxP  

 

Definition 3.5. We define an translation from 


P  to )(


PP  as the following:  

)(:][


PP P  
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},{  xxx   

}{  xx   

},,{  xaxaxax   

},{  xaxax   

Definition 3.6. We define two sets [ ] = {[ ] :for i in }P i P
 

   and RPPM 


 .  

Definition 3.7. Let   be a set of sentences and 







  RPPVec ][][ . We define a translation from   

to Vec . 

 

VecV  :  

)],[],([)),(,( rqpqrp    

 

Please notice that the translation is an one to one correspondence.   

 

Remark 3.8. Notice that 
 MVec .  

Definition 3.9. Two elements )],[],([ 0rlk   and )],[],([ 1rqp   of Vec  are in the same equivalence 

class, if axk =  or xk =  and axp =  or xp =  and byl =  or yl =  and czq =  or zq =  and 

10 = rr  where zyx ,,  are basic nouns and cba ,,  are intersective adjectives.  

Remark 3.10. Two elements in 
M  are in the same equivalence class, if the two elements that first two 

elements are represented by the same letters and last ones are the same. For instance, )],[],([ rqp   

and )],[],([ rqp   are in the same equivalence class because first objects of two elements are denoted 

by p , second ones are q  and last ones are r .  

Definition 3.11. A down-set of element )],[],([ 0rlk   of 
M  is a set 

0 1 0 1[([ ],[ ], )] ={([ ],[ ], ) :[ ] [ ] and [ ] [ ]and = }Rd k l r p m r p k m l r r       
   and also we define 

}:][{=][ 






MiidMd RR

.  

 

3.2. Constructing steps of 



M from


M  

 

The following steps will be applied for every element of 


M . Note that we have first set 


  MM Vec=  before applying the following steps. 

1. If 


 Mrxx )},,{,(  and Pax , then add )},,{,( raxax   to 


M .  

2. If 


 Mrxx ),,},,({   and Pax , then add ),},,({ raxax   to 


M .  

3. If 


 Mrax ),},({   or 


 Mraxax ),},,({  , then add ),},({ rx   to 


M .  

4. If 


 Mrax )},{,(  or 


 Mraxax )},,{,( , then add )},{,( rx  to 


M .  

5. If 


 Mrxx ),},,({   and Pax , then add ),},,({ raxax   to 


M .  

6. Finally, the last step is to take ][ 


Md R

 as 



M .  
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Example 3.12. For a given ))},(,()),,(,()),,(,()),,(,({= 2100 kbrxelcrkydrxaycrx  , 

},,,,,,{= xeclkdycyaxxP , 

)}},,{},,({),},,{},,({),},,,{},,({),},,{},,{({= 2100 rkbkexerlclkkrydydyxaxryycxxVec 

 



M  is composed of all elements in Table 3 and Table 4. The sign  indicates the sentences that can be 

derived from the sentence next to in the figures. 

 

Table 3.Applying the constructing steps to )},,{},,({ 0ryycxx  and )},,,{},,({ 0rydydyxax   

 

 
Table 4.Applying the constructing steps to )},,{},,({ 1rlclkk  and )},,{},,({ 2rkbkxxe   

 

Definition 3.13. 0 1[ ] [ ] and [ ] [ ] and =p k m l r r      iff )],[],([)],[],([ 01 rlkrmp    

Theorem 3.14. )),(,(| qrp   iff 



Mrqp )],[],([  , in other words, 

),(=:]])[[,(=  





MM RRR MM .   

Proof 3.14. We will prove the theorem on noun complexity. Proofs for sentences having universal 

quantifiers with only basic nounswere already given in ),R(  . Also, derivations of those sentences 

from a set of sentences are independent on existence of any other forms of sentences with or without 

adjectives. On the other hand, 



M  in ,IA),R(   is a super set of 



M  in ),R(  . We will prove the 

theorem considering those situations. 

() Supposing )),(,(| qrp  , we will show that 



Mrqp )],[],([  . 

Case 1: )),(,(| byrax  .If  )),(,( byrax ,then


 Mryybybxaxax )},,,{},,,({ , 

therefore, 



 Mryybybxaxax )},,,{},,,({ . Suppose  )),(,( byrax  and )),(,(| yrx   
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and Pxa  and Pyb . We know that ―if )),(,(| yrx  , then 


 Mryyxx )},,{},,({ ‖ by 

Proof 2.15. )},,,{},,,({ ryybybxaxax   is added to 


M  from the construction (1) and (2). Finally, 



 Mryybybxaxax )},,,{},,,({ . 

Please note that it is hold for all derivable sentences from )),(,( byrax   since all down sets of 

)},,,{},,,({ ryybybxaxax   are contained by the construction. 

Case 2: )),(,(| byrax  . If  )),(,( byrax , it is clear. Otherwise, there is a proof tree 

whose root is )),(,( byrax  . There are some cases for this derivation as the follows: 

(a) If )),(,(| byrax  , we proved and mentioned it in Case 1.  

(b) If )),(,(| byrx   and Pax , then )),(,(| byrax   again.  

(c) If )),(,(| yrax   and Pby , then )),(,(| byrax   again (by Case 1).  

(d) If )),(,(| yrx  and Pbyax  , , then )),(,(| byrax   again (by Case 1).  

 

Case 3: )),(,(| byrax   is routine. 

Case 4: )),(,(| byrax   is routine. 

Case 5: )),(,(| yrx  . If  )),(,( yrx , there are possibly an awful lot of proof trees 

whose roots are )),(,( yrx   as can be seen in Figure 4. Starting the proofs as we mentioned, for all 

sentences which derive )),(,( yrx   are hold. If no sentences of   derives )),(,( yrx   except itself, 

it contradicts our  )),(,( yrx . Hence, if there exists at least one sentence which derives 

)),(,( yrx  , then )],[],([ ryx   must be in 



M . 

Other proofs are routine. 

() We will show that )),(,(| qrp   supposing 



Mrqp )],[],([  . 

If any )],[],([ rqp   in Vec , the proof is easy. Otherwise, we will use the down-set definition 

and property of one to one correspondence of Vec . 

Let be )],[],([ rbyax   in 



M . Suppose that Vecrbyax  )],[],([  (otherwise, 

 )),(,( byrax , therefore, )),(,(| byrax  ). Then there is a ]),[],([ rqp   where 

)],[],([ rbyax   is a an element of ])],[],[([ rqpd R


. So, )],[],([ rqp   must be in Vec  since V  is 

an one to one correspondence. Hence, )),(,( qrp  . Finally, )),(,( qrp   follows )),(,( qrp  . 

Other proofs are routine. 

Theorem 3.15.  |  iff there exists at least one   such that ][][    in 



M .  

Proof 3.15. We saw that there is at least one upper set of   to derive it from   or a sentence   due to 

the definitions V  and down-sets in the sufficient condition of Theorem 3.15. 

Corollary 3.16. Let   be set of sentences in ),R(  . ]])[[,( M , ),( 





M  and ),( 





M  are 

equivalent models.  

Corollary 3.17. Let   be set of sentences in ),R(  . ]])[[,( M , ),( 





M  and ),( 





M  are 

equivalent models.  
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4. Conclusion 
 

This paper has presented two logical systems and their set-theoretic semantics. The smaller system 

consists of transitive verbs and quantifiers. The bigger system is an extension of the small one which is 

restricted to intersective adjectives. The logical systems have three equivalent set-theoretic models. 

),( 





M  and ),( 





M  provide simplicity for checking derivability and non-derivability of a sentence 

from a set of sentences and also truth and falsity of a sentence in models of the logics because the models 

are built on the idea of equivalence class, being elements of a set and also testing whether a subset or not. 

We hope that logico-linguists, applied and theoretical computer scientists, and pure and applied 

logicians might be interested in results in this paper. 
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